
Compiler Construction:

Introduction and History

INTRODUCTION AND ADMINISTRATION

2

Administrivia

Instructor: Garrett Morris Lab instructor: April Wade

Office: Eaton 2028 Office: Eaton 3025

Tuesday 12:30-2:30 PM Thursday: 1:00-2:30 PM

Thursday 3:00-5:00 PM Friday: 12:00-1:30 PM

Web page: http://ittc.ku.edu/~garrett/eecs665s18

3

http://ittc.ku.edu/~garrett/eecs665s18

The point

Form and function of programming languages.

4

The point

Syntax and semantics of programming languages.

5

The point: syntax

Σύνταξις, orderly or systemic arrangement

I don’t care (very much) about syntax

6

Theory Implementation

Regular languages,

regular expressions

Lexing, lexx, alex

Context-free languages,

finite automata

Parsers, yacc, happy

The point: semantics

Σημαντικός, significant, (something that) shows or signifies

We all care (implicitly) about semantics

7

Directly By translation

𝑒1 ⇓ 𝜆𝑥. 𝑒 𝑒2 ⇓ 𝑣 𝑒 𝑣/𝑥 ⇓ 𝑤

𝑒1𝑒2 ⇓ 𝑤
𝑒1𝑒2 = 𝑒1 𝑒2

Interpreters Compilers

EECS 662 EECS 665

The point: learning

• How to interpret text as (high-

level) programs

• How to assure semantic

properties of programs

• How high-level programs are

implemented in machine

language

• (A subset of) Intel X86

architecture

• Deeper understanding of code

• Deeper understanding of

common compilation tools

(gcc, llvm, &c)

• Manipulating complex, data

structures (recursively)

• Programming (functionally, in

Haskell)

8

Not the point: grading

Out of class In class

Labs (~10) 30% Midterm 15%

Homeworks (~4) 30% Final 20%

Quizzes 5%

Total 60% Total 40%

9

You must pass both columns to pass the course.

Haskell

1971: Robin Milner starts the LCF project (at Stanford)

1973: Implementation of LCF (at Edinburgh) includes

“meta language” (ML)

1987-90: Haskell project aims to standardize multiple

dialects of “lazy” ML

10

1998: Haskell ’98 report defines

(effectively) the current version of the

language.

Haskell

Functional & pure

• Programs manipulate values,

rather than issue commands

• Functions and computations

are first-class entities

• Side effects explicit in terms

and types

Strongly & statically typed

• Compiler guarantees that

programs meet correctness

conditions

• Good support for generic

types and type inference

• User-defined “algebraic” data

type with pattern matching

11

Haskell

Functional & pure

• Programs manipulate values,

rather than issue commands

• Functions and computations

are first-class entities

• Side effects explicit in terms

and types

Strongly & statically typed

• Compiler guarantees that

programs meet correctness

conditions

• Good support for generic

types and type inference

• User-defined “algebraic” data

type with pattern matching

12

FP languages are force multipliers

Resources

Recommended:

• Appel, Modern Compiler Implementation in ML

Other compiler texts:

• Aho, Lam, Sethi, Ullman, Compilers-Principles, Techniques & Tools

Haskell tutorials:

• Lipovača , Learn you a Haskell…

• O’Sullivan, Stewart, Goerzen, Real World Haskell

• Allen, Moronuki, Haskell Programming from First Principles

13

WHAT IS A COMPILER?

14

History

1940s: computers programmed in assembly

1951-2: Grace Hopper developed A-0 for the UNIVAC I

1957: FORTRAN compiler developed by team led by

John Backus

15

1960s: development of the first bootstrapping

compiler for LISP

• Single step to give meaning to

programs

• More common than you might

think

– JavaScript

– Ruby / Python / other scripting

languages

– JBC / CIL / other VMs

Output

Assigning meaning to code

16

Input

Source language

Interpretation

Source languages

Optimized for understanding

– Expressive: matches human ideas

of syntax and meaning

– Redundant: includes information

to guide compilation and catch

errors

– Abstract: details of computation

not fully determined by code

17

#include <stdio.h>

int factorial(int n) {
int acc = 1;
while (n > 0) {
acc = acc * n;
n = n - 1;

}
return acc;

}

int main(int argc, char *argv[]) {
printf("factorial(6) = %d\n", factorial(6));

}

• Gives meaning to program by

translation

• Frequently targeting low-level

code

• But doesn’t have to:

– Source-to-source translations

– Various compilers target

JavaScript

Output

Assigning meaning to code

18

Input

Source language

Execution

Machine language

Compilation

Machine languages

Optimized for execution

– Inexpressive: expressions match

hardware operations

– Explicit: very little implicit

information about program

meaning

– Concrete: abstractions &

information about intent is lost

19

_factorial:

pushl %ebp

movl %esp, %ebp

subl $8, %esp

movl 8(%ebp), %eax

movl %eax, -4(%ebp)

movl $1, -8(%ebp)

LBB0_1:

cmpl $0, -4(%ebp)

jle LBB0_3

movl -8(%ebp), %eax

imull -4(%ebp), %eax

movl %eax, -8(%ebp)

movl -4(%ebp), %eax

subl $1, %eax

movl %eax, -4(%ebp)

jmp LBB0_1

LBB0_3:

movl -8(%ebp), %eax

addl $8, %esp

popl %ebp

retl

• Compilation usually divided

into stages

• Intermediate representations

optimized for different

program manipulations

• Key idea: composition of

translations

Output

Assigning meaning to code

20

Input

Source language

Execution

Machine language

Parsing

Intermediate

languages

Code generation

Static analysis

Compilers by composition

21

Source language

Assembly

Parsing → Abstract syntax tree

Abstract syntax

Data-flow analysis → Interference graph

Type checking → Type-annotated syntax tree

Lexing Stream of characters → stream of tokens

Desugaring → Simplified syntax tree

Control-flow analysis → Control-flow graph

Register allocation → Assembly

Code emission

Compilers by composition

• Higher level languages

may require more steps

• Smaller passes simplify

understanding &

maintenance

22

Desugaring

Tuple rewriting

Scope analysis

Infix grouping

Lexing

Parsing

Delit

Functional notation

Tuple type generation

Kind inference

Instance simplification

Instance derivation

Type inference

Substitution cleanup

Polymorphism

specialization

Pattern match

compilation

Inlining

Initializer

h-expansion

Future directions

• Compiler correctness & certification

• JIT compilation and virtual machines

• Modular and generic programming

23

