Compiler Construction:

INntroduc

ion and

istory

INTRODUCTION AND ADMINISTRATION

Administrivia

Instructor: Garrett Morris Lab instructor: April Wade
Office: Eaton 2028 Office: Eaton 3025
Tuesday 12:30-2:30 PM Thursday: 1:00-2:30 PM
Thursday 3:00-5:00 PM Friday: 12:00-1:30 PM

Web page: http://ittc.ku.edu/~garrett/eecs665s18

http://ittc.ku.edu/~garrett/eecs665s18

The point

Form and function of programming languages.

The point

Syntax and semantics of programming languages.

The point: syntax
2uvtadig, orderly or systemic arrangement

Theory Implementation

Regular languages, Lexing, 1lexx, alex
regular expressions

Context-free languages, | Parsers, yacc, happy
finite automata

| don't care (very much) about syntax

The point: semantics

2nuavTtikog, significant, (something that) shows or signifies

Directly By translation

e U Ax.e e, lv elv/x]Iw [eie,] = [e;1([e,])

eje;, U w
Interpreters Compilers
EECS 662 EECS 665

We all care (implicitly) about semantics

The point: learning

* How to interpret text as (high-
evel) programs

e How to assure semantic
oroperties of programs

* How high-level programs are
Implemented in machine
language

(A subset of) Intel X86
architecture

Deeper understanding of code

Deeper understanding of
common compilation tools
(gcc, llvm, &)

Manipulating complex, data
structures (recursively)

Programming (functionally, in
Haskell)

Not the point: grading

Out of class In class
Labs (~10) 30% Midterm 15%
Homeworks (~4) 30% Final 20%
Quizzes 5%
Total 60% Total 40%

You must pass both columns to pass the course.

Haskell

1971: Robin Milner starts the LCF project (at Stanford)

1973: Implementation of LCF (at Edinburgh) includes
“meta language” (ML)

1987-90: Haskell project aims to standardize multiple
dialects of “lazy” ML

1998: Haskell '98 report defines
(effectively) the current version of the

language.

10

Haskell

Functional & pure

* Programs manipulate values,
rather than issue commands

* Functions and computations
are first-class entities

* Side effects explicit in terms
and types

Strongly & statically typed

« Compiler guarantees that
programs meet correctness
conditions

* Good support for generic
types and type inference

« User-defined “algebraic” data
type with pattern matching

11

Haskell

Functional & pure Strongly & statically typed

* Programs manipulate values, « Compiler guarantees that
rather than issue commands programs meet correctness

e Functions and computations conditions
are first-class entities * Good support for generic

* Side effects explicit in terms types and type inference
and types « User-defined "algebraic” data

type with pattern matching

FP languages are force multipliers

12

Resources

Recommended:

* Appel, Modern Compiler Implementation in ML

Other compiler texts:

* Aho, Lam, Sethi, Ullman, Compilers-Principles, Techniques & Tools

Haskell tutorials:

* Lipovaca, Learn you a Haskell...

* O'Sullivan, Stewart, Goerzen, Real World Haskell

 Allen, Moronuki, Haskell Programming from First Principles

13

WHAT IS A COMPILER?

14

History

1940s: computers programmed Iin assembly
1951-2: Grace Hopper developed A-0 for the UNIVAC |
1957: FORTRAN compiler developed by team led by

John Backus

1960s: development of the first bootstrapping
compiler for LISP

Assigning meaning to code

 Single step to give meaning to
programs

Source language

* More common than you might
think

— JavaScript Interpretation

— Ruby / Python / other scripting
languages

— JBC / CIL / other VMs

Input Output

Source languages

Optimized for understanding #include <stdio.h>
— Expressive: matches human ideas (Rl

int acc = 1;

of syntax and meaning while (n > 0) {
. . . acc = acc * n;
— Redundant: includes information n=n-1;
to guide compilation and catch }
return acc;
errors }
— Abstract: detalls.of computation | I A
not fU”y determined by code printf("factorial(6) = %d\n", factorial(6));

}

17

Assigning meaning to code

Gives meaning to program by
translation

Frequently targeting low-level
code

But doesn’t have to:

— Source-to-source translations

— Various compilers target
JavaScript

Source language

Machine language

Input

Compilation

Execution

Output

18

Machine languages

. . . _factorial:
Optimized for execution pushl %ebp
. . movl %esp, %ebp
— Inexpressive: expressions match subl $8, %esp

movl 8(%ebp), %eax
movl %eax, -4(%ebp)
movl $1, -8(%ebp)

hardware operations
— Explicit: very little implicit

LBBO 1:
information about program ol LG
. Jlie -
rT]€3E3r1|r]SJ movl -8(%ebp), %eax
. imull -4(%ebp), %eax
— Concrete: abstractions & movl %eax, -8(%ebp)

movl -4(%ebp), %eax
subl $1, %eax
movl %eax, -4(%ebp)
jmp LBBO_1

LBBO_3:
movl -8(%ebp), %eax
addl $8, %esp
popl %ebp
retl

information about intent is lost

19

Assigning meaning to

code

e Compilation usually divided
Into stages

Source language

 Intermediate representations

optimized for different

Intermediate
languages

program manipulations
» Key idea: composition of

translations

Machine language

Input

Parsing

Static analysis

Code generation

Execution

Output

20

Compilers by composition

Source language

Lexing

Parsing
Desugaring

Type checking

Abstract syntax

Control-flow analysis

Data-flow analysis

Register allocation

Code emission

Assembly

Stream of characters — stream of tokens
— Abstract syntax tree

— Simplified syntax tree

— Type-annotated syntax tree

— Control-flow graph

— Interference graph

— Assembly

21

Compilers by composition

* Higher level languages Delit —>| Tuple type generation | | Polymorphism
may require more steps ¥ ! specialization
* Smaller passes simplify Lexing Functional notation l
UnqerStand'ng & Parilin T t Pattern match
maintenance T J il '”frence compilation
Infix grouping Instance derivation v
! ! Inlinin
g
Scope analysis Instance simplification l
v ¢ Yt
Tuple rewriting Type inference Initializer
I) n-expansion
Desugaring Substitution cleanup l

22

Future directions

e Compiler correctness & certification
 JIT compilation and virtual machines
* Modular and generic programming

23

